Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Mar Biotechnol (NY) ; 24(4): 801-819, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35915285

RESUMO

Marine animal by-products of the food industry are a great source of valuable biomolecules. Skins and bones are rich in collagen, a protein with various applications in food, cosmetic, healthcare, and medical industries in its native form or partially hydrolyzed (gelatin). Salmon gelatin is a candidate of interest due to its high biomass production available through salmon consumption, its biodegradability, and its high biocompatibility. However, its low mechanical and thermal properties can be an obstacle for various applications requiring cohesive material. Thus, gelatin modification by cross-linking is necessary. Enzymatic cross-linking by microbial transglutaminase (MTG) is preferred to chemical cross-linking to avoid the formation of potentially cytotoxic residues. In this work, the potential of salmon skin gelatin was investigated, in a comparative study with porcine gelatin, and an enzymatic versus chemical cross-linking analysis. For this purpose, the two cross-linking methods were applied to produce three-dimensional, porous, and mechanically reinforced hydrogels and sponges with different MTG ratios (2%, 5%, and 10% w/w gelatin). Their biochemical, rheological, and structural properties were characterized, as well as the stability of the material, including the degree of syneresis and the water-binding capacity. The results showed that gelatin enzymatically cross-linked produced material with high cross-linking densities over 70% of free amines. The MTG addition seemed to play a crucial role, as shown by the increase in mechanical and thermal resistances with the production of a cohesive material stable above 40 °C for at least 7 days and comparable to porcine and chemically cross-linked gelatins. Two prototypes were obtained with similar thermal resistances but different microstructures and viscoelastic properties, due to different formation dynamics of the covalent network. Considering these results, the enzymatically cross-linked salmon gelatin is a relevant candidate as a biopolymer for the production of matrix for a wide range of biotechnological applications such as food packaging, cosmetic patch, wound healing dressing, or tissue substitute.


Assuntos
Materiais Biomiméticos , Salmo salar , Animais , Reagentes de Ligações Cruzadas/química , Embalagem de Alimentos , Gelatina/química , Salmo salar/metabolismo , Suínos , Transglutaminases
2.
Mar Drugs ; 20(1)2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-35049887

RESUMO

Nowadays, biofouling is responsible for enormous economic losses in the maritime sector, and its treatment with conventional antifouling paints is causing significant problems to the environment. Biomimetism and green chemistry approaches are very promising research strategies for the discovery of new antifouling compounds. This study focused on the red alga Sphaerococcus coronopifolius, which is known as a producer of bioactive secondary metabolites. Fifteen compounds, including bromosphaerol (1), were tested against key marine biofoulers (five marine bacteria and three microalgae) and two enzymes associated with the adhesion process in macroalgae and invertebrates. Each metabolite presented antifouling activity against at least one organism/enzyme. This investigation also revealed that two compounds, sphaerococcinol A (4) and 14R-hydroxy-13,14-dihydro-sphaerococcinol A (5), were the most potent compounds without toxicity towards oyster larvae used as non-target organisms. These compounds are of high potential as they are active towards key biofoulers and could be produced by a cultivable alga, a fact that is important from the green chemistry point of view.


Assuntos
Diterpenos/farmacologia , Rodófitas , Animais , Organismos Aquáticos , Incrustação Biológica , Diterpenos/química , Química Verde , Halogenação
3.
Mar Biotechnol (NY) ; 21(6): 743-752, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31494811

RESUMO

The need for new environmentally friendly antifouling and the observation that many marine organisms have developed strategies to keep their surface free of epibionts has stimulated the search for marine natural compounds with antifouling activities. Sponges and in particular fungi associated with them represent one of the most appropriate sources of defence molecules and could represent a promising biomass for the supply of new antifouling compounds. The objective of this work was therefore to evaluate the antifouling potency of 7 compounds isolated from the sponge derived fungus Eurotium chevalieri MUT 2316. The assessment of their activity targeted the inhibition of the adhesion and/or growth of selected marine bacteria (5) and microalgae (5), as well as the inhibition of the mussel's byssus thread formation (tyrosinase activity). The 7 compounds showed bioactivity, with various levels of selectivity for species. Cyclo-L-Trp-L-Ala was the most promising active compound, and led to the inhibition, at very low concentrations (0.001 µg ml-1 in 61.5% of cases), of adhesion and growth of all the microalgae, of selected bacteria, and towards the inhibition of tyrosinase. Promising results were also obtained for echinulin, neoechinulin A, dihydroauroglaucin and flavoglaucin, respectively, leading to inhibition of adhesion and/or growth of 9, 7, 8 and 8 microfouling species at various concentrations.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Incrustação Biológica , Eurotium/química , Animais , Antibacterianos/química , Organismos Aquáticos/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Bivalves/efeitos dos fármacos , Microalgas/efeitos dos fármacos , Monofenol Mono-Oxigenase/antagonistas & inibidores , Poríferos/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...